MRI of the Hip

Jon A. Jacobson, M.D.

Professor of Radiology
Director, Division of Musculoskeletal Radiology
University of Michigan

Take Home Points

• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable
• Bone marrow edema:
 – Is not early osteonecrosis
 – Is likely from insufficiency fracture
• Insufficiency fracture: MRI is best
• Trochanteric bursitis is uncommon
Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome

Joint Pathology

- Effusion:
 - Reactive, infection, hemarthrosis
- Synovial hypertrophy:
 - Inflammatory: rheumatoid, atypical infection
 - Proliferative: PVNS, synovial chondromatosis
 - Characterized: enhancement
Hip Joint: anatomy

- Distal extent: to intertrochanteric line
- Recess: between labrum and capsule
- Does **not** collect dependently
 - Surrounds femoral neck\(^1\)
- Iliopsoas bursa:
 - Normal joint communication in 15 - 20%
- Obturator externus bursa: <10\(^2\)

\(^1\)Moss et al. Radiology 1998; 208:43
\(^2\)Robinson P et al. Radiology 2003; 118:230
Injection / Aspiration: fluoroscopy

- 75% direct anterior
- 24% oblique anterior
- 1% direct lateral

Shortt. Skeletal Radiol 2009; 38:377

Iliopsoas Bursa

Arthrogram
Iliopsoas Bursa: distention

Axial T1w post-gadolinium

Obturator Externus Bursa

Arthrogram
Hip: anterior recess

- Anterior and posterior layers
 - Fibrous tissue + minute layer of synovium
 - Hyperechoic
 - Each 2 - 4 mm thick

Radiology 1999; 210:499

Hip Joint: septic effusion

Long Axis
Joint: injection

- Anterior recess
- In plane
- Transducer:
 - Parallel to femoral neck
 - Consider curvilinear
- Needle: distal to proximal
- 97% accuracy

Joint Injection

- Femoral neck target
- Preferred over head
- High volumes
- Less extra-articular contrast

Pigmented Villonodular Synovitis

• Benign synovial proliferation
• Synovial hyperplasia
 – Multinucleated giant cells
 – Lipid-laden macrophages
 – Hemosiderin deposition
• Monoarticular: localized or diffuse

Lin et al. AJR 1999; 172:191
Synovial Chondromatosis

- Benign cartilaginous metaplasia
- Large joints: knee and hip
- May or may not ossify
- May detach: intra-articular bodies
Synovial Chondromatosis

Synovial Chondromatosis
Synovial Chondromatosis

Total Hip Arthroplasty

- Metal-on-metal articulation
- Wear debris, hypersensitivity
 - Joint effusion synovitis
 - Bursa distention
- Pseudo-tumor:
 - Soft tissue: necrosis, inflammation
 - Ultrasound: 99% sensitive\(^1\)
 - MRI: effective\(^2\)

\(^2\)Garbuz DS Clin Orthop Relat Res 2014; 472:417
THA: iliopsoas bursal fluid

T1w Axial T2w Axial

Metal-on-Metal: Pseudotumor
Metal-on-Metal: Pseudotumor

Take Home Points

- Joint effusion: does not collect dependently
Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome

Labral Tear: MR arthrography

- Abnormal contrast extension into labrum
- Improved sensitivity: 50% (MRI) to 81%\(^1\)
- Anterior: most common
- Classify:
 - Degeneration: gray signal
 - Partial tear, full-thickness tear
 - Detachment

\(^1\)Sutter R et al. AJR 2014; 202:160
Labrum: degeneration

Note hip osteophytes (white arrows)

Anterior Labrum: sagittal T1-w fat sat

Tear

Normal
Anterior Labrum: axial T1-w fat sat

Tear | Normal

Anterior Labrum: sagittal T1-w fat sat

Posterior | Anterior | Posterior | Anterior

Tear | Normal
Anterior Labrum: axial T1-w fat sat

Tear

Normal

Labrum Tear: full-thickness
Hip Labrum: normal variants

- Sublabral sulcus
- Posteroinferior groove
- Pectinofoveal fold
- Supra-acetabular fossa
Hip Joint: labrum

• Sublabral sulcus: controversial
 – Normal variant or asymptomatic tear\(^1\)
 – Any intralabral contrast: abnormal\(^2\)

\(^1\)Radiology 1996; 200:231
\(^2\)AJR 1999; 173:345

Hip Joint: sublabral sulcus

• Smooth contrast-filled cleft: <50%
• Junction of labrum and hyaline cartilage
• No labral detachment
• No labral abnormality

Saddik. AJR 2006; 187:W507
Sublabral Sulcus

Hip Joint: posteroinferior groove

- Normal variant: 22.4%
- Posteroinferior quadrant
- Near transverse ligament: inferior

Dinauer PA et al. AJR 2004; 183:1745
Posteroinferior Groove

Hip Joint: pectinofoveal fold

- Seen at MR arthrography: 95%
- Variable appearances
- Variable attachments
 - Usually inserts onto capsule
 - May insert onto femur

Blankenbaker D et al. AJR 2009; 192:93
Hip Joint: supra-acetabular fossa

- Pseudodefect of acetabular cartilage
 - Type 1: 1.6%
 - Bony fossa filled with contrast
 - Type 2: 8.9%
 - Bony fossa filled with cartilage

Dietrich TJ et al. Radiology 2012; 263:484

Supra-acetabular Fossa: Type 1

From Dietrich TJ et al. Radiology 2012; 263:484
Supra-acetabular Fossa: Type 2 (white arrow)

Note (black arrow): supra-acetabular roof notch (another normal variant)

From Dietrich TJ et al. Radiology 2012; 263:484

Paralabral Cyst

- Multilocular, fluid signal
- Associated with labral tear: detachment
- Fill with intra-articular contrast: 94%
- Extend extra-articular: 72%
- Remodel adjacent ilium: 50%

Magerkurth O et al. Skeletal Radiol 2012; 41:1279
Labral Tear + Paralabral Cyst

Ligamentum Mucosum

- Provides some stability
- Minimal head vascularity
- Torn in up to 15% having arthroscopy
- Major or minor trauma
- Tear: fluid signal
 - Partial: MRI is inaccurate

Blankenbaker DG et al.
AJR 2012; 199:1093
Labral Tear: location

- Anterior: iliopsoas tendon impingement
- Anterior or anterosuperior:
 - Associated with CAM-type femoroacetabular impingement
- Posterolateral tear:
 - Pincer-type femoroacetabular impingement
 - Leveraging effect

Aly AR et al. Skeletal Radiol 2013; 42:1245

Femoroacetabular Impingement

- CAM-type
- Pincer type
- Combination of both: most common

Brian P et al. Semin Roentgenol 2010; 2:230
CAM-type FAI:

- Extra bone:
 - Femoral head-neck junction
- Hip flexion / internal rotation:
 - Contact between extra bone and anterior labrum
- Labral tear, cartilage injury

CAM = a mechanical linkage that translates motion

FAI: pathology

- Radiograph: femur
 - Pistol-grip deformity
 - Fibrocystic change
- MRI: **alpha angle** >50 degrees
- MR arthrography:
 - Improved sensitivity acetabular cartilage: 83% (MRI) to 92%
 - No advantage: femoral cartilage defects

\(^1\text{Sutter R et al. AJR 2014; 202:160}\)
CAM-type FAI: Pistol-grip deformity

CAM-type FAI: alpha angle >50 degrees
Alpha Angle
Abnormal: >50 degrees

Pitfalls

• Pseudo-bump
 – Capsular reflection
 – Low signal
• Pseudo-labral tear
 – Adjacent iliopsoas tendon
 – Low signal
 – Simulates displaced labral tissue
Pincer-type FAI:

- Deep hip socket or retroverted acetabulum
- Abnormal contact between acetabular rim and labrum
- Radiograph: cross-over sign
- MRI: acetabular retroversion
Pincer-type FAI: Cross-over sign

Note: distance between sacrococcygeal junction and pubis should be between 3 and 4 cm

FAI: Cross-over sign and fibrocystic change
Pincer-type FAI: Otto Pelvis
(idiopathic acetabular protrusio)

Femoral head and acetabulum: medial to ilioischial line

FAI: imaging findings

• Radiography: inaccurate
 – Pistol-grip and fibrocystic change
 – Cross-over sign

• Alpha angle measurements:
 – Unacceptable intra- and inter-observer variability
 – Does not correlate with physical exam findings
 – Osseous bump: not always anterior
Take Home Points

- Joint effusion: does not collect dependently
- Imaging for FAI is unreliable

Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome
Osteonecrosis: terminology

• Involving end of a bone:
 – Avascular necrosis
 – Aseptic necrosis

• Diaphysis or metaphysis:
 – Bone infarct

Osteonecrosis: etiology

• Anemia (sickle cell)
• Steroids
• Etoh
• Pancreatitis
• Trauma
• Idiopathic
• Caisson disease or Chronic renal failure (children)
Osteonecrosis: MRI classification

• Mitchell
 – MRI-based
 – Describes the central signal intensity
 – Not used
• A: fat
• B: blood
• C: fluid (cyst)
• D: fibrosis (dense)

Osteonecrosis: classification

• Modified Ficat
• 1: symptoms but normal radiographs
 – 1A: abnormal MRI; 1B: abnormal bone scan
• 2: radiograph positive- mixed lucent sclerotic
• 3: subchondral lucency (crescent sign)
 – 3A: without collapse; 3B: with collapse
• 4: osteoarthrosis

Osteonecrosis

Osteonecrosis

Note early flattening or collapse
Osteonecrosis: MRI findings

- Serpiginous, geographic low signal
 - Represents interface, not necessarily calcified
 - Bone marrow edema **NOT** early osteonecrosis¹
 - Weight-bearing aspect of femoral head
- Internal signal: variable
- Double line sign: pathognomonic
 - High signal (T2w) inside low signal line²

¹Kim YM et al. JBJS 2010; 82B:837
²Apostolos HK et al. Sem Musculoskelet Radiol 2011; 15:281

Note: double line sign
Osteonecrosis: MRI findings

- Symptoms correlate with:
 - Bone marrow edema and volume of necrosis
- Secondary osteoarthrosis:
 - Seen in end-stage osteonecrosis
 - Findings should asymmetrically involve the femur > acetabulum
 - Unlike isolated OA: similar imaging findings across joint and marked femoral head findings
Isolated Bone Marrow Edema

- In the past, was called:
 - Transient osteoporosis of the hip
 - Transient bone marrow edema syndrome
- Now: due to insufficiency fracture
 - Look for discontinuous linear low signal
 - Subcortical, parallel to cortex
 - Subtle collapse, little femoral head abnormality
- Is NOT a early finding of osteonecrosis

Insufficiency Fracture
Osteopenia

Bone Marrow Edema: Insufficiency fracture
Normal Bone Density Returns

3 months later

Take Home Points

• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable
• Bone marrow edema:
 – Is **not** early osteonecrosis
 – Is likely from insufficiency fracture
Outline:

- Hip joint
- Labrum and FAI
- Osteonecrosis
- Fractures
- Trochanteric pain syndrome

Fractures: femur

- MRI findings:
 - Bone marrow edema
 - T1w and PDw: linear low signal fracture line
 - T2w: low or high signal fracture line
- MRI is much better than CT¹
 - Sensitivity (insufficiency): MRI 99%, CT 69%
- MRI most accurately shows extent of fracture

¹Cabarrus MC et al. AJR 2008; 191:995
Proximal Femur Fracture: MRI

Femur Fracture: negative radiograph and CT
Garden Classification

1. Incomplete, valgus impacted
2. Complete, non-displaced
3. Displaced, angulated
4. Displaced

Garden 3 or 4 = hip replacement because of osteonecrosis risk

Femoral Neck: radiographs

- Internal rotation radiograph essential
- Goal: diagnose non-displaced femoral neck fracture
- Garden Classification: 1 – 4
 - 1 & 2: non-displaced → percutaneous pins
 - 3 & 4: displaced → arthroplasty (risk of AVN)
- With osteopenia, MRI necessary
Femoral Neck Fracture: now displaced
Femoral Neck Fracture

Greater Trochanter Fracture

T1w MRI T2w MRI
Intertrochanteric Fracture

Fracture: bisphosphonate

- To treat osteoporosis: *i.e. Fosamax*
 - Inhibits osteoclasts, may slow bone turnover
- Increased risk of fracture:
 - Average treatment at fracture: 6 years
 - Femur: subtrochanteric, diaphyseal, lateral cortex
- Early sign: periosteal reaction
 - 2% are asymptomatic at early stage
 - Black line: fracture likely progresses

Chen SS et al. AJR 2010; 194:1581
Insufficiency Fracture: bisphosphonate

Femur: fatigue-type stress fracture

T1w T2w Later
Femur Fracture: pathologic

- Lesser trochanteric avulsion
 - Adult: pathologic fracture until proven otherwise
 - Cortical metastasis: lung cancer

Lesser Trochanteric Avulsion: metastasis

Coronal T1w | Coronal T2w | Axial post-gado
Take Home Points

• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable
• Bone marrow edema:
 – Is not early osteonecrosis
 – Is likely from insufficiency fracture
• Insufficiency fracture: MRI is best

Outline:

• Hip joint
• Labrum and FAI
• Osteonecrosis
• Fractures
• Trochanteric pain syndrome
Trochanteric Pain Syndrome:

- Trochanteric bursitis: uncommon\(^1\)
 - Up to 20% of subjects\(^2\)
 - Not actually inflamed\(^3\)
 - Not associated with pain\(^4\)
- Gluteus tendinosis: 50%\(^1\)

\(^{1}\)Kong A et al. Eur Rad 2007; 17:1772.
\(^{2}\)Long SS et al. AJR 2013; 201:1083
\(^{3}\)Silva F et al. Clin Rheumatol 2008; 14:82
\(^{4}\)Blankenbaker et al. Skeletal Radiol 2008; 37:903

Greater Trochanter: gluteal tendons

Anterior Lateral Posterior

Gluteus medius (red) Gluteus minimus (blue)
Greater Trochanter

Pfirrmann et al. Radiology 2001; 221:469

Axial MRI

Yellow arrow = gluteus medius
White arrow = gluteus minimus
Greater Trochanter

Yellow arrow = gluteus medius
White arrow = gluteus minimus

AF: anterior facet
LF: lateral facet
PF: posterior facet
Trochanteric Bursa Distention

Gluteus Medius Tendinosis and Subgluteus Medius Bursitis
Peritrochanteric Fluid Signal

- Tendon:
 - Gray: tendinosis; Fluid signal: tear
 - Calcific tendinosis
- Bursa
- Diffuse soft tissue: common finding
 - Doesn’t correlate with symptoms
 - Likely irrelevant if symmetric

1Blankenbaker DG et al. Skeletal Radiol 2008; 37:903
Morel-Lavallée Lesion

Note location of fluid between subcutaneous fat and muscle or aponeurosis fascia
Take Home Points

• Joint effusion: does not collect dependently
• Imaging for FAI is unreliable
• Bone marrow edema:
 – Is not early osteonecrosis
 – Is likely from insufficiency fracture
• Insufficiency fracture: MRI is best
• Trochanteric bursitis is uncommon